1. e-works数字化企业网
  2. 新闻
  3. IT要闻 > 硬件动态

斑马技术:深度学习——制造业的未来已来

2024年06月04日 来源:斑马技术
关键字:斑马技术  机器视觉  
此文章由斑马技术大中华区技术总监 程宁创作。
       各行各业的制造商都面临着诸多方面的挑战,要雇佣并留住合格员工,要跟上技术创新的步伐,还要满足客户对于速度和精准度的更高要求。对于汽车制造业而言,可持续性、运营和供应链的数字化、更高的安全要求以及对个性化的需求也成为其首要关注的问题。斑马技术去年发布的《汽车生态系统愿景研究报告》显示,73%的受访行业决策者认为,如果不采用更多的数字化技术,他们的企业将处于竞争劣势,其中“开发软件专业知识”被列为决策者的前五大优先投资选项之一。麦肯锡发布的报告也认同这一观点,称在机器人技术、AI和机器学习方面的最新发展使我们处于新自动化时代的前沿。

       机器视觉作为工业之“眼”,适用于数据采集、识别和检测等制造流程,随着中国制造业用工成本的提高,机器视觉成为推动数字经济时代制造业发展的重要技术;此外,深度学习融入机器视觉算法也将驱动制造业的智能化升级。其中深度学习光学字符识别(OCR)软件便是一项重要的技术创新。根据斑马技术的《汽车生态系统愿景研究报告》,汽车OEM(原始设备制造商)决策者认为,对比2022年,预计2027年工业级机器视觉的使用率将增长83%。

       深度学习与OCR的结合能够满足制造业在合规性、质量和存在性检测方面对速度、准确度、以及可靠解决方案的需求。汽车、制药、电子和食品饮料行业的运营领导者通过深度学习OCR获得的收益更为显著。

深度学习OCR赋能智能制造

       机器视觉和深度学习OCR正在推动智能制造的发展,Gartner将智能制造定义为在工厂内部以及其他供应链职能部门之间协调物理和数字化流程的概念,这转变了人员、流程和技术的运作方式,并提供了可提升决策质量、效率、成本和敏捷性所需的信息。换言之,通过深度学习和OCR实现制造业的自动化,有助于从硬件、软件和人员方面获得效益。

       但要进行准确的OCR检验却颇具挑战,风格化的字体,模糊、扭曲或被遮挡的字符,反光的物体表面以及复杂、不均匀的背景,都可能使传统OCR技术无法实现稳定识别。所幸的是市场上已经有新工具面世,它们具备工业级深度学习OCR功能,并附带基于数千种不同图像样本进行预训练的即用型神经网络,这一系列新工具能够开箱即用,即使在处理非常复杂的情况时也可以确保高准确性。

       这意味着在汽车制造环境中,深度学习OCR解决方案可以准确地读取电池、轮胎、零部件和配件上喷印、压印、以及哑光和金属质地的序列号,以确保其与正确车型的车辆识别号(VIN)相对应。这些解决方案还可以应对各种字体样式和大小,并适用于不断变化且“严苛”的照明及制造环境。

       深度学习OCR还可以用作更广泛的机器视觉解决方案的一部分。例如,在汽车制造环境中,可以通过部署机器视觉解决方案,检查连接器针脚是否缺失及其质量和合规性是否达标,也可以对印刷电路板上的敷形涂层、粘合剂检验、线束组装、电池极性以及总装等进行检验。

       在这些场景中,使用相同的机器视觉相机和统一软件平台部署的机器视觉解决方案能够以更快的速度检验物品,标记出疑似缺陷和错误供工程师检查并判定是否为故障,以进一步处理。审查决策将被反馈到神经网络中,有助于保持持续学习输入的活跃状态,从而进一步开发和增强模型。这优化了效率,并为工程师免去了一项重要却繁琐的手动任务。

日益增长的深度学习价值

       深度学习的速度和准确性使其能够更好地帮助工程师确保生产制造的质量,控制生产成本并提高客户满意度。此外,易用性也同样重要,而这正是深度学习OCR软件的优势所在,它是一种易于实施和使用的应用,无需机器视觉专业知识,只需几个简单的步骤即可部署。

       总的来说,更易于获取和使用的机器视觉和深度学习OCR解决方案为工业成像专业人员和工程师解锁了新的可能性,使他们能够更像数据科学家一样思考和行动。面对不断增长的数据生成速度、数据量和数据多样性,以及对于生产速度、安全性和准确性等更高水平的要求,我们相信这一技术发展是必要的,也是业界所乐见的。
责任编辑:胡竞丹
您可以:
广告区域
排行榜
  1. 联想工程师登上中国冰雪之夜舞台,讲述冬奥“0故障”背后的故事
  2. 让IT运维实现轻交付 联想ServiceForce突破行业难题
  3. 奥哲孟凡俊:融合AI的低代码成为企业数智化核心引擎
  4. 以生态融合注入创新力,OpenUSD奠定企业数字化转型新里程碑
  5. 《中国制造业走向2025》白皮书
  6. 聚焦数字化变革,联想用“新IT”赋能企业数字化转型升级
  7. e-works网站VIP社区E币规则
  8. 西部数据进一步扩展旗下智慧视频解决方案
  9. 什么是数字化?有哪些成功案例?
  10. 角逐智能制造赛道,联想如何以新IT引擎突围
编辑推荐
• 以数智之力构建智慧集成供应链,第十七届中国...
• 华为中国行2025·广西人工智能峰会成功举办
• SAP商业AI获乌镇峰会精品案例奖
• 施耐德电气“电力+冷却”双创新方案亮相进博会
• 八赴进博会 | ABB电气多款新品首发,智启零碳...
• 持续增长 广受认可 | Fortinet发布2025年第三...
• Brother于第八届进博会举办ESG交流活动
• 浪潮信息刘军:AI超节点的商业价值核心是Toke...
• 斯凯孚亮相第八届进博会 推出中国首款近零碳轴...
• 打造数字化供应链,专业实训班在厦门成功举办
• ABB低压传动 50 周年:以创新与节能增效推动可...
• 科德宝进博发布全新品牌中文标识,多线布局本...
文章推荐
• 别把生命当“公测”:造车新生代狂飙下的安全...
• PTC:高科技企业数字化转型的4个案例
• 钣金加工企业数字化管理系统的研究与应用
• 疲劳仿真:产品寿命的“预言家”
• 会叠衣服的中美机器人,谁离具身智能更近?
• 什么是线束设计?
• 大型PLC市场萎缩,但头部企业仍在死磕国产化?
• 众为兴重磅发布智能协作机器人
• 聊聊MES生产绩效的设计与应用
• 工装夹具全揭秘:让制造企业效率翻15倍,成本...
• 供应链降本的三层境界
• 高通收购Arduino,物联网与机器人开发生态要变...

系列微信

数字化企业网
PLM之神
制信科技
MES百科
工业自动化洞察
智能制造IM
智能装备观察
智能工厂前线
工业机器人洞察
工业创新
工业软件应用
智能制造网博会
ERP之家
供应链指南针
© 2002-2025  武汉制信科技有限公司  版权所有  ICP经营许可证:鄂B2-20030029-1(于2003年首获许可证:鄂B2-20030029)
鄂公网安备:420100003343号 法律声明及隐私权政策     投诉举报电话:027-87592219

关于我们    |    联系我们    |    隐私条款

ICP经营许可证:鄂B2-20080078
(于2003年首获许可证:鄂B2-20030029)
鄂公网安备:420100003343号
© 2002-2025  武汉制信科技有限公司  版权所有
投诉举报电话:027-87592219

扫码查看